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The two-dimensional isotropic turbulence in an incompressible fluid is investigated 
using the modified zero fourth-order cumulant approximation. The dynamical 
equation for the energy spectrum obtained under this approximation is solved 
numerically and the similarity laws governing the solution in the energy-containing 
and enstrophy-dissipation ranges are derived analytically. At large Reynolds 
numbers the numerical solutions yield the k-3 inertial subrange spectrum which 
was predicted by Kraichnan (1967), Leith (1968) and Batchelor (1969) assuming 
a finite enstrophy dissipation in the inviscid limit. The energy-containing range is 
found to satisfy an inviscid similarity while the enstrophy -dissipation range is governed 
by the quasi-equilibrium similarity with respect to the enstrophy dissipation as 
proposed by Batchelor (1969). There exists a critical time t, which separates the initial 
period (t  < tc)  and the similarity period (t > t,) in which the enstrophy dissipation 
vanishes and remains non-zero respectively in the inviscid limit. Unlike the case of 
three-dimensional turbulence, t, is not fixed but increases indefinitely a,s the viscosity 
tends to zero. 

1. Introduction 
Two-dimensional isotropic turbulence is a highly idealized version of turbulent fluid 

motion. It has attracted the interest of researchers owing to its relevance to the 
atmospheric circulation a t  intermediate scale and to magnetohydrodynamic motions 
with strong magnetic fields. An obvious feature of two-dimensional turbulence is that 
the mean-squared vorticity (or enstrophy) is an inviscid invariant, as well as the energy 
which is also invariant for inviscid three-dimensional flows. The existence of this extra 
invariant makes the statistical properties of two-dimensional turbulence entirely 
different from those of more familiar three-dimensional turbulence. A typical con- 
sequence is the presence of a strong energy transfer from higher to lower wavenumbers 
which leads to the vanishing energy dissipation in the inviscid limit. Another con- 
sequence is the forward enstrophy transfer from lower to higher wavenumbers just 
like the energy transfer in three-dimensional turbulence. 

The existence of energy transfer from small-scale components to large-scale ones 
was already noted in the classical work by Onsager (1949), which describes the gather- 
ing of vortices of the same sense and the dispersion of vortices of the opposite sense. 
The corresponding energy transfer from higher to lower wavenumbers was first 
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explicitly mentioned by Fjrartoft (1953) who found that only a small fraction of the 
energy flows to higher wavenumbers while a great<er fraction flows to  lower wave- 
numbers. The same trend was also observed in the numerical calculation ofthe energy 
spectrum by Ogura ( 1962) based upon the zero fourth-order cumulant approximation, 
but the calculation was interrupted by the occurrence of negative values of the energy 
spectrum. 

The simultaneous existence of the energy and enstrophy transfer processes in two- 
dimensional turbulence was first noted by Kraichnan (1967), and it was predicted that 
the k-8 spectrum is associated with the backward energy transfer and the k-3 spectrum, 
modified by a logarithmic factor, is associated with the forward enstrophy transfer. In  a 
subsequent paper, Kraichnan ( 197 1) determined the logarithmic factor explicitly. 
Leith (1  968) also derived the spectrum using a simple diffusion model. An explicit 
use of the notion of the enstrophy transfer was made by Batchelor (1969) who derived a 
similarity form of the energy spectrum for the equilibrium range, which yields the k-3 
spectrum in the inertial subrange, using a similar argument to  Kolmogorov’s for three- 
dimensional turbulence. He also derived a similarity law of the energy spectrum for 
the energy-containing range assuming that the energy-containing and enstrophy- 
containing ranges obey the same similarity law. 

Two-dimensional turbulence has been dealt with by several authors using various 
closure assumptions. Leith (197 1 )  carried out a numerical calculation of t,he energy 
spectrum based upon the Markovian eddy-damped approximation and obtained the 
k-3 spectrum. Later the calculation was extended by Pouquet et al. (1975) to the time- 
dependent case a t  much higher Reynolds numbers taking account of the effect of non- 
local interactions between different wavenumber components, and the same spectrum 
was obtained. Kraichnan (1971) determined the numerical factor of the k-3 spectrum 
using the test field model, and the k3 spectrum was obtained from a numerical 
calculation by Leith & Kraichnan (1972) based on the same model. Leith (1971) and 
Leith & Kraichnan (1972) analysed the growth of the initial uncertainty in the 
atmospheric motions applying the notion of the backward energy transfer in two- 
dimensional turbulence and discussed the predictability of such motions. A different 
type of the spectrum which is proportional to k4 was proposed by Saffman (1971) 
using a conjecture that the vorticity field of two-dimensional turbulence will take a 
piece-wise continuous pattern just like the piece-wise continuous velocity field of 
Burgers turbulence. 

As stated above, the k-3 inertial subrange spectrum is based upon the existence of 
non-zero enstrophy flux in the inviscid limit, while the k-4 spectrum is associated with 
the vanishing enstrophy flux in this limit. Now it was proved by Pouqnet et al. (1975) 
under the Markovian eddy-damped approximation that the enstrophy dissipation 
vanishes with the viscosity a t  any finite time. This conclusion seems to conflict 
with the existence of the k-3 spectrum, which was also obtained by their numerical 
calculation using the same assumption. It will be shown below, however, that no 
contradiction exists since the conclusion of Pouquet et al. only requires that it takes 
increasingly longer time as the viscosity decreases before the k3 spectrum is realized. 

In  the present paper, two-dimensional isotropic turbulence in an incompressible 
fluid is investigated by applying the modified zero fourth-order cumulant approxi- 
mation used by Tatsumi & Kida ( 1980) for three-dimensional isotropic turbulence. 
Although this approximation is the lowest-order approximation in both the cumulant 
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expansion and Taylor expansion of the memory integral, the similarity laws derived 
from this approximation are shown to be exact by taking account of higher-order 
approximation. 

I n  9 2, the equation governing the energy spectrum of two-dimensional turbulence 
is derived using this approximation. In  9 3, the general properties of two-dimensional 
turbulence are discussed with particular reference to  the possibility of the k-3 spectrum. 
$ 4  describes the procedure in the numerical calculation, and its results are presented 
in detail in 0 5. I n  5 6, the similarity laws in different wavenumber ranges are derived 
analytically from the energy spectrum equation and their validity is examined by 
comparing with numerical results. § 7 describes the decay of enstrophy and its similarity 
laws. In  9 8, the similarity laws governing the higher-order cumulants and character- 
istic functional are derived, and it’ is shown that some part of the similarity laws 
obtained in §§6 and 7 are exact results independent of any closure assumption. 
Finally, the comparative discussion of the present results with those obtained from 
numerical experiments is made in $9.  

2. Equation for the energy spectrum 
The two-dimensional motions in an incompressible viscous fluid are expressed in 

terms of either the velocity u(x, t )  = (ul,u,) or the vorticity W(X, t )  = ~ u l / ~ x ,  - &,/ax, 
as a function of the two-dimensional rectangular co-ordinates x = ( x l ,  2,) and the time t .  
The vorticity w ( x , t )  is governed by the following equation: 

where $(x, t )  is the stream function, v the kinematic viscosity and A = az/ax: + P/ax?$ 
Two-dimensional homogeneous turbulence is described completely by the character- 

istic functional of the probability distribution of Fourier-transformed vorticity 

where k = (k,, k,) is the two-dimensional wavenumber vector. The characteristic 
functional is defined by 

(2.3) @[@I, tl = (exp W ,  X I ] ) ,  (2, x) = /z*(k) x(k, t) dk, 

where ( )  denotes the mean value with respect to the probabilit’y distribution of 
X(k,t) ,  * the complex conjugate and x(k) an arbitrary argument function of k .  The 
equation for @[z,t] is derived from the law of conservation of the probability and 
equation (2.1) asfollows: 

dkdk’, (2.4) 
S@ k;k,-kLk, * S2@ 

” at + v 1 k2z*(k) Sz*(k)dk= - -‘/I Ik-k’I2 (k)Sz*(k’)Sz*(k-k) 

where S/Sz(k) denotes the functional derivative. 
The cumulants of the probability distribut,ion, C(n)(n = 1,2, .  . .)say, aredefinedasthe 

coefficients of the logarithmic Taylor expansion of @[z, t ] .  For isotropic turbulence, the 
mean vorticity vanishes identically so that C(1) = 0. Using the lowest-order approxima- 
tion of the modified cumulant expansion, we obtain from (2.4) the equat,ion for C(,). 

16-2 
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For isotropic turbulence, Cf2) may be written in terms of the energy spectrum function 
E ( k , t ) ,  where k = Ikl. Thus, the equation for C@) yields the following equation for 
E ( k , t ) :  

1 - exp [ - v(k2 + kj2 + 
v( k2 + k’2 +- k”2) 

t ]  O ( t )  = 9 J 
whcre k”2 = k2+ k’2+ Zpkk‘, T(k, t )  is the energy transfer function and the initial 
condition 

has been assumed. 

strophy are expressed in terms of E ( k , t )  as follows: 

T(k,O) = O (2.6) 

If the energy spectrum E ( k , t )  is known, the energy, the enstrophy and the palin- 

I Energy d(t)  = i(lu12) =/ow E ( k , t ) d k ,  

Enstrophy 2 ( t )  = +(u2) = 

Palinst,rophy P(t) = 

where w = ( O , O ,  w ) .  

3. General properties of two-dimensional turbulence 

in time, and the rates of their dissipation are given from (2.1) as 
For two-dimensional flows in viscous fluid, the energy d and the enstrophy 2 decay 

a 
E ( t )  -= - - &(t) = 2v%(t). (3.1) at 

a 
at 

r(t)  = - - 2 ( t )  = 2v9qt) .  ( 3 4  

Equation (3.1) also holds for three-dimensional fluid motions. 

dissipation remains non-zero in the limit of vanishing viscosity: 
In the case of three-dimensional turbulence, it is generally accepted that the energy 

s > O  as v+O (3.3) 

(see Proudman & Reid 1954; Brissaud et al. 1973; Andre & Lesieur 1977; Orszag 
1977; Tatsumi, Kida & Mizushima 1978). The relationship (3.3) implies that 

2+co as v+O, (3.4) 

that is, an enstrophy catastrophe occurs in this limit. 
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For two-dimensional turbulence on the other hand, the enstrophy catastrophe does 
not occur since it follows from (3.1) and (3.2) that 

s+O as v+O. (3.5) 

Therefore Kolmogorov's hypothesis is not applicable to two-dimensional turbulence 
and the k-5 spectrum does not necessarily hold for this turbulence. (When an external 
energy supply is present, the k-8 spectrum may exist on account of the independence of 
the rate of energy supply from the viscosity.) 

On the other hand, the possibility of non-zero enstrophy dissipation in the inviscid 
limit, q > O  as v+O, 

is not, excluded since the palinstrophy B may increase indefinitely even in two- 
dimensional flows. Batchelor (1969) proposed to adopt (3.6) as the basic hypothesis for 
t,wo-dimensional turbulence and, assuming the quasi-equilibrium of enstrophy, derived 
the following similarity form of the energy spectrum: 

(3.7) 

for k z Ir,, $ k,, where k, and kd are the wavenumbers characterizing the energy- 
containing and enstrophy-dissipation ranges respectively and E, is a non-dimensional 
function. If the Reynolds number is large enough, there appears an inertial subrange 
where the spectrum becomes independent of v and (3.7) reduces to  

E(k)  = C ~ 3 k - ~ ,  (3.8) 

where Cis a non-dimensional constant. 

tion, which includes the present approximation as a limiting case, that 
It was shown by Pouquet et al. (1975) using the Markovian eddy-damped approxima- 

P ( t )  < B(0) exp [@?(0)t2], (3.9) 

q + O  as v+O (3.10) 

and hence that g ( t )  remains finite a t  any finite time. Then it follows from (3.2) that 

for finite t .  This result is in apparent contradiction with the assumption (3 .5) ,  but this 
contradiction will be resolved later on by noticing the non-uniform character of the 
limiting processes v --f 0 and t + co. 

Lastly let us examine the possibility of an absolute equilibrium state for two- 
dimensional tixrbulence in the inviscid limit v + 0. The canonical distribution for two- 
dimensional turbulence was discussed in detail by Kraichnan (1967,1975). The energy 
spectrum associated with this distribution is given by 

k 
a f bk2' 

E ( k )  = - (3.11) 

where a and b are constants corresponding to the inviscid invariants d and 2. The 
canonical spectrum (3.11) represents the equipartition of energy a t  lower wavenumbers 
and the enstrophy equipartition a t  higher wavenumbers. The spectrum (3.1 1 )  is also 
obtained as a stationary solution of the equation T ( k ,  t )  = 0, to  which the energy 
spectrum equation ( 2 . 5 )  reduces for an identically inviscid fluid v = 0. 
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It should be remembered, however, that the canonical distribution and the spectrum 
(3 .1  1 )  are not applicable to the real two-dimensional turbulence since, as will be shown 
later, the effect of the viscous dissipation cannot be neglected even in the limit of 
vanishing viscosity. The situation becomes quite different if we consider a model 
turbulence which has only finite wavenumbers truncated a t  a large but finite value. In  
the inviscid limit, such a model turbulence becomes an isolated system with the two 
inviscid invariants d and 22 and the canonical distribution is realizable for this model 
system. 

Numerical experiments on such model systems have been carried out by several 
authors (Fox & Orszag 1973; Basdevant & Sadourny 1975; Seyler et al. 1975; Kells & 
Orszag 1978). Numerical results obtained all show rapid approach of the energy 
spectrum toward the canonical spectrum (3.1 1 ) .  Thus, the absolute equilibrium state 
characterized by (3 .11)  is realizable for two-dimensional systems having finite wave- 
numbers. On the other hand, the numerical simulation by Fornberg (1977)  which also 
deals with an inviscid truncated system but one provided with an artificial energy sink 
at  the highest wavenumber clearly shows the approach to the inertial subrange spec- 
trum (3 .8 ) .  A comprehensive discussion of the two-dimensional inertial subrange may 
be found in a review by Kraichnan & Montgomery (1979) .  

4. Numerical calculation 

respect to the representative wavenumber k, and velocity u, of turbulence: 
For the convenience of numerical work all variables are made non-dimensional with 

wavenumber K = k/k , ,  time 7 = u,k, t ,  Reynolds number R = u,/(vk,) .  (4.1) 

As the initial condition the following two cases are considered: 

(1) W k ,  o) /E ,  = 2(k /ko)  exp ( - k2 /k i ) ,  (4 .2 )  

(4.3) 

where E,  = ui/k,. Cases I and I S  represent the initial states in which the energy 
spectrum density E(k)/277k is non-zero and zero respectively a t  zero wavenumber. 

The energy spectrum equation ( 2 . 5 )  is solved numerically for the initial conditions 
( 4 . 2 )  and ( 4 . 3 )  and Reynolds numbers R = 20, 100, 200, 400, lo4 and lo5. The integra- 
tion with respect t’o k’ is carried out using Simpson’s sum rule with uneven mesh sizes 
K‘ = k’/k, = abn, a = 0.1, b = 1 - 1 1  N 1.14, n = 1 ,2 ,  ..., N ,  and N = 40 N 7 5 ,  where 
smaller b and larger M are used for larger values of R. The integration with respect t o p  
is made using the 40-point LegendreGauss method which employs variable mesh 
sizes, finer around p -t 1 than around p E 0. The time integration is made by the 
forward difference method with the increment AT = 0.01. 

Statistical quantities such as the energy E(t) ,  the enstrophy 2(t) and the palinstrophy 
P(t) are derived from (2 .7 )  using the numerical result of the energy spectrum E ( k , t ) .  
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FIGURE 1. The energy spectrum function E(k , t )  for R = lo6. (a )  Case I. (b )  Case 11. 

5. Energy spectrum 
The evolution of the energy spectrum E ( k , t )  for R = lo5 is shown graphically in 

figures 1 and 2. I n  contrast to three-dimensional turbulence, there exists a strong 
energy transfer from higher to lower wavenumbers. This backward energy transfer 
towards the region of vanishing viscous effect is actually responsible for the conserva- 
tion of energy &(t )  for two-dimensional turbulence a t  large Reynolds numbers. 

It may be seen in figure 2 that the energy spectrum satisfies a similarity law over a 
finite wavenumber range. The similarity is confirmed by making curves of E ( k , t )  for 
different Reynolds numbers and times coincide with each other. For large Reynolds 
numbers, there are found to exist two similarity regions corresponding to  the energy- 
containing and enstrophy-dissipation ranges. 

(i) Energy-containing range 

The energy-containing ranges of the spectra for R = 400, lo4 and lo5 and different 
times are put together to make a similarity curve as shown in figure 3. For case I, the 
similarity does not cover very low wavenumbers, and the gradient of E(k , t )  increases 
in time from 1 at 7 = 0 to 2 a t  T = 14. For case 11, on the other hand, the similarity is 
satisfied perfectly down to zero wavenumber and this fact is consistent with the 
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FIGURE 2. The energy spectrum function E(b, t )  with a logarithmic scale. (a) Case I. ( b )  Case 11. 
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k ,  F 14 

FIGURE 3. The similarity of the energy spectrum function E(k,  t )  in the 
energy-containing range. ( a )  Case I. ( b )  Case 11. 
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analytical result which uill be given in 9 6 that the similarity spectrum has the form 
E ( k , t )  a k3 a t  k z 0. The similarity form in the energy-containing range is found to be 
independent of Reynolds number R and its time similarity is expressed as 

7°.86 F ( K ~ O . ~ ~ )  for case I, 
7°’97 F ( K ~ O ’ ~ ~ )  for case 11, 

where F is a non-dimensional function. 

inverse power region as follows: 
The similarity spectra for large Reynolds numbers R = lo4 and lo5 have a common 

for case I, 
E(k , t ) /Eo  = (i:::) 7-2K-3  [ for case 11, 

where the coefficients have been determined from the superimposed curves. The exist- 
ence of the k-3 spectrum in the numerical results indicates that the present approxima- 
tion is compatible with the notion of non-zero enstrophy dissipation (3 .6)  in the inviscid 
limit. 

(ii) Enstrophy-dissipation range 

Unlike the energy-containing range, the spectral curves obtained do not satisfy any 
definite time-similarity in this range but obey a similarity with respect to Reynolds 
number, which may be expressed for curves a t  7 = 10 and R = lo4 and lo5 as 

R-l.53 F(K/RO.~~) for case I, 

R-132 F ( K / R O ‘ ~ ~ )  for case 11. 
(5.3) 

It is interesting to note that the exponents of R (K v-I) given above are in fairly good 
agreement with those of (3.7) based on the quasi-equilibrium of enstrophy. 

Although the spectral curves do not satisfy a single similarity law, the curves for 
R 2 1 0 4  become proportional to  k-3 a t  lower wavenumbers in this range. At higher 
wavenumbers, on the other hand, the spectrum takes the following exponential form : 

E (k, t )  a exp ( - b ~ ~ ) ,  (5.4) 

wheres = 1.3 1.4 and b is a constant. It will be shown, however, in $ 6  that s E 1 as 
k-too. This discrepancy indicates that  either the asymptotic behaviour s N 1 is 
realized beyond the numerical coverage or the numerical results are not accurate 
enough. but anyway the latter possibility cannot be ignored. In either case, the 
asymptotic form of the spectrum is different from the purely viscous spectrum, 

E ( k ,  t )  a exp ( - 2vk2t), (5.5) 

which is characteristic of weak turbulence. Thus i t  is concluded that the nonlinear 
inertial effect cannot be neglected even a t  very high wavenumbers where the spectral 
intensity is very low. 

6. Similarity laws for the energy spectrum 

t,ime is expressed as 
The similarity form of the energy spectrum with respect to Reynolds number and 

E(k ,  t ) / E ,  = R ~ B F ( K / ( R  W),  (6.1) 
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where a, p, y and 6 are constants and F is a non-dimensional function. These exponents 
and function have been determined numerically in 3 5 ,  but the exponents can also be 
obtained analytically by solving the energy spectrum equation in the respective wave- 
number ranges. 

Similarity arguments concerning the energy spectrum have already been put forward 
for three-dimensional turbulence. Lesieur &, Schertzer (1  978) analysed the similarity 
laws using the Markovian eddy-damped approximation and examined the dependence 
of the energy decay law on the structure of the spectrum a t  very low wavenumbers. 
Tatsumi &, Kida (1980) showed, using the modified zero fourth-cumulant apptoxima- 
tion, that there exist three similarity laws corresponding to the energy-containing, 
intermediate and energy-dissipation ranges and concluded that the similarity 
exponents for the first and last ranges are exact values uninfluenced by taking account 
of higher-order cumulants. 

For two-dimensional turbulence, there exist only two similarity ranges, correspond- 
ing to the energy-containing and enstrophy-dissipation ranges. 

(i) Energy-containing range 

The energy-containing range is characterized by 

k z k,. (6.2) 

I n  the inviscid limit, v+ 0, the energy spectrum equation (2 .5 )  takes the following form 
in this range: 

____- - aE(k’ t ,  1; dk’! * [kE(k’, t )  - k’E(k, t ) ]  E(k”,  t )  (1 -p2)f  dp. (6.3) 
at ?l -1  

It immediately follows from the Reynolds number independence of (6.3) that  

a = y = o .  (6.4) 

Substituting (6. I )  with (6.4) into (6.3) and equating powers of 7 on both sides, we obtain 

/3+36= -2.  (6.5) 

Another relation follows from the invariance of the energy 8, which is written, on 
substitution from (6.1 ), as 

so that 
p+s = 0. 

Hence itfollowsfrom (6.5) and (6.7) that 

p =  - $ = I .  (6.8) 

E(k , t ) /E ,  = ~ F ( K T ) .  (6.9) 

With the exponents (6.4) and (6.8), the similarity form (6.1) is written as 

This analytical form is in good agreement with numerical result (5.1) for case I1 but 
less accurately with that for case 1. The similarity form (6.9) was first derived by 
Batchelor (1969) from dimensional analysis based on the conservation of energy. 
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The expression (6.9) enables us to  obtain the law of evolution of the enstrophy if it 
is assumed to  be determined by the energy spectrum in the energy-containing range. 
Substitution of (6.9) into (2.7) immediately gives 

so that, from (3.2),  

where 

(6.10) 

(6.1 1) 

(6.12) 

The time dependence of these quantities was also obtained by Batchelor (1969) follow- 
ing the same argument. As a matter of fact, it will be shown in (ii) below that the 
enstrophy-dissipation range also makes a contribution to the enstrophy but its time 
dependence is not affected by this contribution. 

The asymptotic form of the energy spectrum for very small wavenumbers can be 
obtained analytically. If we assume the spectrum for k x 0 in the form 

E ( k ,  t ) /E ,  = A&) (klk,)",  (6.13) 

a being a positive constant and A ,  a function of time in general, equation (6.3) is 
expressed, to the lowest order of k, as 

(6.14) 

For a < 3, including case I (a  = l),  the right-hand side of (6.14) is of higher order of k 
than the left-hand side, so that dA,/dt = 0, that is, 

A ,  = const. for a < 3. (6.15) 

The invariance of the gradient A ,  of the energy spectrum for case I at  small wave- 
numbers is not observable in the numerical curves shown in figure 2a,  but must be 
present a t  still smaller wavenumbers. 

For a = 3, on the other hand, (6.14) yields the solution 

(6.16) 
a? 

in view of (6.9). Thus, t,he similarity form (6.9) is explicitly written at  very small wave- 
numbers as 

E(k,  t ) /E ,  = 4 K374 (6.17) 

The complete validity of the similarity (6.9) down to the region of very small wave- 
numbers is satisfied with good accuracy by numerical curves for case I1 (a = 3) as 
shown in figure 3b. The k3 dependence of the energy spectrum for k z 0 was first given 
by Basdevant et al. (1978) using the Markovian eddy-damped approximation. 

(ii) Enstrophy-dissipation range 

The enstrophy-dissipation range is characterized by the wavenumber kd defined by 
(3.7), which may also be written as 

kd = (vt)-i, (6.18) 
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in view of (6.11). The relation (6.18) gives the exponents of the similarity form (6.1) as 

y = - a =  8. (6.19) 

Substitution of (6.1) with (6.19) into (2.5) determines the remaining exponents as 

a =  - 3  2,  p =  -4, (6.20) 

and shows that all terms of (2.5) remain of the same order of magnitude in this 
range. 

With the exponents (6.19) and (6.20), the similarity form (6.1) is written as 

E(k,  t ) / E ,  = R-%-+F(K/(R47-4). (6.21) 

The Reynolds number similarity given by (6.21) is satisfied very well by the numerical 
result for case I but less accurately by that for case 11. On the other hand, no clear time 
similarity is revealed by the numerical results probably on account of insufficient 
accuracy of the numerical work. 

The enstrophy dissipation q(t)  is expressed in terms of the energy spectrum through 
(3.2) and the integral (2.7). Substituting the similarity forms (6.9) for the energy- 
containing range and (6.21) for the enstrophy-dissipation range into the integral, we 
find that the enstrophy-dissipation range gives the dominant contribution, 

q(t)  cc 2207-3, (6.22) 

which is in accordance with (6.1 l),  whereas that from the energy-containing range is of 
smaller order o (R- l~ -~ ) .  This justifies US in referring to the wavenumber range (3.7) 
(or (6.18)) as the enstrophy-dissipation range. 

In  view of (6.22), the similarity law (6.21) is identical with (3.7) derived from the 
hypothesis of the quasi-equilibrium of enstrophy. Thus, the hypothesis is confirmed 
under the framework of the present approximation. 

Similarly the contributions to  the energy &(t) can be examined. Substituting the 
similarity forms for the energy-containing and enstrophy-dissipation ranges into the 
enstrophy integral (2.7)) we see that the contribution from the former range is O(R070) 
while that from the latter is of smaller order O(R-17-1) . This again confirms the ap- 
propriateness of the term energy-containing range. 

The situation is different for the enstrophy 2?(t). Substitution of the similarity form 
(6.21) into theenstrophyintegral(2.7)gives thecontribution, 

2 ( t )  a R 0 r 2 ,  (6.23) 

which is of exactly the same order of magnitude as the contribution from the energy- 
containing range (6.1 0). Thus, the enstrophy is contributed equally from the energy- 
containing and enstrophy-dissipation ranges with the similarity exponents as given 
by (6.10) or (6.23). However, the enstrophy is still expressed by (6.10) if the numerical 
coefficient J given by (6.12) is changed by taking account of the contribution from the 
latter range. 

(iii) Inertial subrange 

The inertial subrange is the common region of the energy-containing and enstrophy- 
dissipation ranges, Thus, the energy spectrum in this subrange must satisfy the 
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similarity laws (6.9) for the former range and (6.21) for the latter simultaneously. This 
can be achieved only by the following similarity form: 

E ( k , t ) / E ,  = c'7-2K-3, (6.24) 

where C' is a non-dimensional constant. In view of the relation (6.21), this is nothing 
but the two-dimensional inertial subrange spectrum (3.8) obtained by Kraichnan 
(1967), Leith (1968) and Batchelor (1969) using the notion of the enstrophy cascade. 

The numerical value of C' is determined from the curves of the energy spectrum for 
R = 105as 

(6.25) 

which are nearly equal to each other. The constant C of (3.8) can be calculated from 
(6.1 1 )  and (6.25) taking account of the contribution from the enstrophy-dissipation 
range, but this was not practicable due to the lack of time similarity of numerical data 
of the enstrophy-dissipation range. 

13.6 for case I, 
12.4 for case 11, 

c=( 

(iv) Logarithmic correction of time 

As is well known, the k-3 spectrum (6.24) gives rise to a divergent enstrophy (Kraichnan 
1967, 1971; Pouquet et al. 1975). The enstrophy integral is evaluated using (6.9), (6.18) 
and (6.24) as 

2 ( t )  M Iokdk2E(k, t )dk z r21Og (R7), (6.26) 

so that 
T/(t) w +log (227) (6.27) 

for large R. Hence, the enstrophy dissipation becomes 

M log(1/v)-+co as v+O. (6.28) 

Obviously, the similarity law (6.21) isnot consistent with (6.28) since the correspond- 
ing enstrophy dissipation (6.22) is of smaller order than (6.27). The consistency, how- 
ever, can be restored by simply replacing the time 7 in (6.21) by 

7* = 7 [log (R7)]-*, (6.29) 

where the exponent - Q of the logarithmic factor has been determined by requiring the 
balance of the dominant terms in (2.5) and the compatibility of the enstrophy-dissipa- 
tion integral with (6.27). The logarithmic correction (6.29) yields the enstrophy of 
0(7-2(1og(R-r))%), which is of smaller order than (6.26), showing that the enstrophy is 
dominantly contributed from the lower-wavenumber region k < kd. It should be noted 
that the logarithmic divergence of the enstrophy does not affect the vanishing energy 
dissipation in the inviscid limit (3.5) which is characteristic of two-dimensional 
turbulence. 

If we require the matching of the modified similarity law in the enstrophy-dissipation 
range with the inviscid similarity law (6.9), we obtain the same inertial subrange 
spectrum (6.24) with logarithmic correction terms of smaller order. Thus, there arises 
no need for substantial modification of the inertial subrange spectrum such as the 
logarithmic correction proposed by Kraichnan (197 1). This is simply because Kraich- 
nan's correction was introduced to make y finite, which he assumed in deriving the 
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7 

FIGURE 4. The decay of enstrophy 2?(t) .  Case I, 2 ? ( O ) / ( ~ , k , ) ~  = 1. 
Case 11, Z?(O)/(u,k,)2 = 2. 

inertial subrange spectrum (3.8), whereas a logarithmically divergent 7 is compatible 
with (3.8) or (6.24) in our theory. 

According to Kraichnan's argument, the eddy-damping term is expressed as 

for k z kd z R) 9 1, and the enstrophy dissipation or the total enstrophy transfer is 
given by 

7 z okk3E(k)  = const., (6.30) 

thanks to  the correction factor (log R)-) in E(k) .  If, on the other hand, 7 is calculated 
using the expression 

7 = Iomo,k2E(k)dk,  (6.31) 

instead of (6.30), i t  would lead to the same divergent expression q z log R as (6.27) in 
spite of the difference in the form of the logarithmic cofiection. 

(v) Far-dissipation range 

The asymptotic behaviour of the energy spectrum for extremely high wavenumbers 
can be obtained following the same procedure as that employed by Tatsumi & Kida 
(1980) for three-dimensional turbulence. The result is expressed as 

E(k , t ) /E ,  = 128-364B-L.'~$ d e x p  [ - ~ K / ( R * T ; * ) ] ,  (6.32) 

where b is a constant. 
The asymptotic behaviour of the numerically obtained spectrum (5.6) for very high 

wavenumbers is a t  variance with (6.32), but the discrepancy seems to be due to the 
insufficient accuracy of the numerical work. 
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7. Enstrophy 
The enstrophy 2(t) is calculated using the relation (2.7) and thenumericalresultsof 

the energy spectrum. The results for R = 100, 200, 400, 104  and lo5 are shown graphic- 
ally in figure 4. The striking feature of the results is that all curves (above R = LOO) for 
cases I and I1 can be made to overlap almost completely if the abscissa of case I1 is 
shifted by the amount 1.4 + 4 2 .  

This empirical law is accounted for as follows. In  two-dimensional turbulence the 
evolution of the enstrophy-containing part of the energy spectrum is independent of 
the details of the spectrum a t  very low wavenumbers. Therefore the non-dimensional 
enstrophy 9(t)/(uo k,)2 will undergo a universal evolution 

= w / ( u o  kIJ2 = G(7), (7.1) 

irrespective of the initial condition of the energy spectrum a t  very low wavenumbers. 
According to the initial conditions (4.2) and (4.3),  9 ( O ) / ( ~ , , k , ) ~  = 1 and 2 for cases I 
and I1 respectively. Hence, if we adopt a new characteristic scale (u, k0)‘ = 4 2  (uo k,) 
for case 11, the nondimensional enstrophy must follow the same evolution as (7.  I) ,  

where 

The empirical law now follows from the equivalence of (7.1) and (7.2) under the trans- 
formation (7.3). 

Figure 4 shows that the enstrophy 2(t) decreases monotonically in time. At very 
large Reynolds numbers, 9(t) remainsnearly constant during theinitial period 0 < t < t,, 
t, being a critical time, and then decreases in the later period t > t,. An analogous trend 
was observed in three-dimensional turbulence (see Andre & Lesieur 1977, Tatsumi & 
Kida 1980), where the decay of energy &’(t) starts almost discontinuously a t  t,, which 
is nearly constant a t  very large Reynolds numbers. I n  two-dimensional turbulence, on 
the other hand, the change in 2(t) around t, is more gradual and t ,  increases with Rey- 
nolds number roughly in proportion to (log R)&. 

The similarity law (6.26) for the evolution of the enstrophy is expressed as 

with 

The validity of this law is checked by plotting the numerical curves of 9(t) in terms of 
the time 7** as shown in figure 5 .  The curves appear to approach fairly closely the 
asymptotic line (7.4) as R and 7 tend to infinity, but the lengths of the numerical 
curves are not sufficient to confirm the approach decisivsly. The best fit for the 
asymptotic law is obtained by the extrapolation of the curves as 

(7.6) 

with r**, = 3.32 and 2.37 ( k 3-32/42) for cases I and I1 respectively. The transforma- 
tion law (7.3) is also observed in this presentation. 
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FIGURE 5. The similarity of the decay of enstrophy -$!(A). 7*., = ~ ( l o g R ~ ) - f .  

The asymptotic law (7.6) shows that the enstrophy dissipation takes place in the 
period7,, > T * * ~ ,  that is, in view of (7.5) and (4.1),  

t > (uo k0)-17**c (log W h  (7.7) 

for large R. This relation is shown to be consistent with the inequality (3.9) given by 
Pouquet et al. (1975). According to (3.2), the palinstrophy 9 must be O(l/v) = O(R)  
in order to make the enstrophy dissipation 11 non-zero in the limit of R -+ co. Then, it 
follows from (3.9) that 

that is, 
eXP[gwut21 > W), 

t > O((logR)% (7.8) 

which is in complete agreement with (7.7). 
As will be shown in $ 8  below, the time similarity of the second-order cumulant 

derived under the present approximation is not changed by taking account of the 
higher-order cumulants. Therefore the time similarity of the enstrophy (7.4) or (7.6) is 
also unchanged, and represents an exact result independent of any closure approxima- 
tion although the numerical value of r**, in (7.6) may depend upon the approximation 
employed. 

8. Similarity of higher-order cumulants and characteristic functional 
In  this section, we attempt to generalize the similarity laws of the energy spectrum 

obtained under the modified zero fourth-cumulant approximation to higher-order 
cumulants and thus to show that these similarity laws are exact results which are free 
from any closure assumption. 
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The cumulants are defined as t'he coefficients of the logarithmic Taylor expansion of 
the characteristic functional CD: 

@[z(k),tl = exp[W(z,t)l. (8.1) 

W(z,t) = 5 g/ . . . /C(n)(kl  ,..., k,,t)$(k,+ ...+ k,)z(k,) ... z(k,)dk, ... dk,, (8.2) 
,=z n! 

where C(n) d e n ~ t ~ e s  the nth-order cumulant. Substitut'ion of the expansion (8.2) into 
equation (2.3) gives an infinite set of equations for the cumulants, which may be written 
in symbolic manner as 

(i) Energy-containing range 

According to the similarity law (6.9), 

C(2) zz k E ( k )  = O(l) ,  

in the energy-containing range. Then, i t  may be obvious that the set of equations (8.3) 
is satisfied by the cumulants of the following orders in this range: 

0%) = O(t%-Z), n = 2, 3, . . , . (8.5) 

The similarity law of the cumulants (8.5) can be expressed in terms of the character- 
istic functional. In  view of (6.9) and (8.5), we may write 

k = t-lq, (8.6) 

(8.7) ~ ( n )  = tn-z r(nt 

where the reduced wavenumber q and cumu1ant.s 
Then, (8.2) is written as 

are assumed to be of order one. 

The presence of the t-n factor in the nth-order term seems to suggest rapid con- 
vergence of the cumulant series (8.8) in time. It should be noted, however, that this 
fact does not necessarily imply the validity of the central limit theorem for t + 00. If we 
introduce a new argument function, 

5(q) = t-'z(k), (8.9) 

in order to make the second-order term independent of time, we find that all other terms 
also become time-independent. Thus, although the higher-order cumulants are of 
smaller order with respect to  t-l in the energy-containing range, they are just  in 
balance with each other in the cumulant equations (8.3) and give contributions of the 
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same order t'o the chsracterist'ic funct,ional. The invalidity of the central limit theorem 
in the energy-containing range is a t  variance with the general belief in normality of'the 
large-scale components of turbulence, which has been experimentally established for 
three-dimensional turbulence (see, for instance, Van Atta & Chen 1968). 

(ii) Enstrophy-dissipation range 

The similarity law of the energy spectrum in the enstrophy-dissipation range is given 
by (6.21). Then, following the same procedure as in (i), we find that the set of equations 
(8.3) is satisfied by the cumulants of the following orders in this range: 

C(n) = O(RS--nt--S (8.10) 

Thus, for large values of the Reynolds number and time, the cumulant On) decreases 
monotonically as the order n increases. 

The similarity law of the cumulants (8.10) can also be expressed in terms of the 
characteristic functional. I n  view of (6.20) and (8.10)) we may put 

k = Rtt-tq, C(n) = R-4n-1)t-s r(n) (8.11) 

where q and I?'s are again quantities of order unity. Then, we obtain the same expres- 
sion as (8.8) and hence find, through the transformation (8.9)) that all terms are of the 
same order in this range. The invalidity of the central limit theorem is not unexpected 
in the enstrophy-dissipation range since the nonlinear interaction associated with finite 
enstrophy transfer is supposed to  produce strong non-Gaussian character of small-scale 
components of turbulence. 

(iii) Statistical quantities determined by the similarity laws 

It has been established that the similarity laws for the energy spectrum in the energy- 
containing and enstrophy-dissipation ranges obtained above are exact results inde- 
pendent of any closure approximation. This conclusion indicates that  the statistical 
quantities which are determined solely by these similarity laws also represent exact 
results. Thus, for instance, the dependence on Reynolds number and time of the 
enstrophy.2 ((6.10), (6.23)), the enstrophy dissipation7 ((6.11), (6.22)) and the inertial 
subrange spectrum ((3.8),  (6.24)) can be taken to be exact (not necessarily unique) 
results, but the numerical coefficients associated with these quantities are not final 
and are likely to be affected by higher-order approximations. 

9. Comparison with numerical experiments 
Numerical experiments on two-dimensional turbulence have been carried out by 

several authors. Lilly (1969, 1971) solved the vorticity equation (2.1) numerically in a 
square domain with periodic boundaries using the difference method with 64 mesh 
points and obtained the energy spectrum of the k-3 form. On the other hand, Deem & 
Zabusky (197 1 )  obtained the k-4 spectrum using nearly the same numerical method. 
These earlier results were, however, shown to be inconclusive by Herring et al. (1974) 
who carried out a numerical calculation using both the finite difference and spectral 
methods with 64 and 128 mesh points. Since the spectral curves due to the finite 
difference method with 64 mesh points are found to  change considerably by doubling 
the mesh points, conclusions concerning the spectrum based on the calculation with 



494 T. Tatsumi and 8. Yanase 

64 mesh points are unreliable. According to the results of Herring et al. based on the 
spectral method with 128 mesh points, the spectrum takes the h4 form a t  the highest 
Reynolds number employed R = 1184, or R = 973 by our definition. It is reported, 
however, by Orszag (1978) that the k-3 spectrum has been attained by the numerical 
calculation at  much higher Reynolds number R = 25500, or R = 9728 by our defi- 
nition. 

Fornberg ( 1977) solved the inviscid vorticity equation numerically using the spectral 
method with 64 mesh points and introducing a dissipative effect by discarding all 
modes with wavenumbers > 20 at  every 60 time steps. According to his results, the 
spectrum takes the k3 form in the earlier period of evolution ( t  < 1000 in an arbitrary 
unit) and then the k-4 form in the far-later period (t  > 3000). It is observed from the 
picture display of the iso-vorticity lines that the stretching of these lines produces 
regions of high vorticity-gradient in the earlier period while the far-later period is 
characterized by the formation of well-defined vortex regions separated from each other. 

The generation of high vorticity gradients or large palinstrophy 9 in the earlier 
period leads to  a finite enstrophy dissipation 7 > 0 and is compatible with the appear- 
ance of the k-3 spectrum in this period. I n  the far-later period, on the other hand, the 
formation of separated vortex regions, which is equivalent to the build-up of the phase 
relations between different wavenumber components, accounts for the vanishing 
enstrophy transfer and the absence of the k-3 spectrum in the later period. The affinity 
of the vorticity field of the far-later period with the piece-wise continuous distribution 
of vorticity assumed by Saffman (1971) gives good reason for the closeness of the 
numerical results with the k-4 spectrum predicted by him. 

Finally, it should be noted that the two-dimensional Euler equation, or equation 
(2.1) with v = 0, was investigated mathematically by Kato (1967) and Sulem (1978), 
and it was concluded that the solution remains regular if it is so initially. Apparently 
this conclusion excludes the possibility of singular behaviour of the solution in the 
inviscid limit v+O. On the other hand, our result shows that the palinstrophy 9 
increases indefinitely as O(v-l)  in this limit. This result, however, is not in conflict with 
the above-mentioned regularity of the inviscid two-dimensional flows since the com- 
mencement of divergence of the palinstrophy is delayed indefinitely as t, cc (log v-’)* 
in the inviscid limit. 

A part of the present work was reported in the Euromech Symposium on ‘Two- 
dimensional and quasi-two-dimensional turbulence ’ held on 5-9 September 1978 a t  
Grenoble, France. Fruitful discussions with Dr Uriel Frisch, Dr Marcel Lesieur and 
other participants are kindly acknowledged. The authors’ thanks are also due to 
Dr Shigeo Kida for his helpful comments. During the course of this work the authors 
have been in receipt of the Grant,s in Aid for Scientific Research from the Ministry of 
Education. 
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